Shifting Gears: 5 Additive Manufacturing Solutions for Automotive Manufacturers

Shifting Gears: 5 Additive Manufacturing Solutions for Automotive Manufacturers

Since the invention of the automobile, the proverbial wheel has never stopped moving. As the automotive industry evolves and faces new challenges, one thing is clear – additive manufacturing (AM) is emerging as the key driver of innovation. According to GlobeNewswire, the Automotive 3D Printing Market size is expected to grow from $2.2 billion in 2022 to $15.8 billion by 2032. As a result, many original equipment manufacturers (OEMs) and suppliers are ditching traditional manufacturing methods to keep up with ever-changing consumer demands and the rise in automotive emissions regulations. New standards leave automotive engineers with an important question to answer: Is AM the solution to their problems?

While each situation is unique, there are five key ways that AM empowers engineers to solve automotive industry challenges:

1. Customization

The global auto-interior market is projected to reach $194.8 billion by 2028, per the Automotive Interior Market Report 2022. Furthermore, a study by McKinsey & Company noted that 84% of buyers of Chinese luxury cars said the ability to personalize their vehicle is of utmost importance. In other words, to meet the insatiable consumer appetite for customization, the automotive industry must shift its attention to create a more agile manufacturing process.

The rise of smartphones, autonomous driving features, and the Internet of Things (IoT) have been major contributors to this trend. Not only are consumers seeing cars for their functional use, but also as an extension of their digital lives. As a result, OEMs and car makers are looking outside of traditional manufacturing materials and exploring more recycled plastics and bio-based alternatives.

That’s where additive manufacturing comes in because it moves past the traditional one-size-fits-all method and allows for the customization of parts with ease. This level of specification enables automotive manufacturers to craft parts with complex geometries at a rapid pace.

An example of this in action is Cupra Racing, who leveraged HP’s Multi Jet Fusion (MJF) technology to overcome challenges with car components including side mirrors, brake and water-cooling inlets, and the steering wheel’s center control module. Given the harsh environment that these parts are regularly exposed to, Cupra Racing aimed to produce multiple variants of these components to fine-tune the flexibility and speed of the end-use parts.

Due to MJF’s ability to create strong parts quickly, HP was able to accelerate the design phase and deliver functional parts in just a few days.

Cupra Racing racecar

Cupra Racing automotive side mirror created with HP MJF 3D printer

2. Plastics

Plastics dominate the automotive 3D printing market and make up 50% of the materials used to construct the vehicle. According to GlobeNewswire, the plastic material segment controls 43.3% of the automotive 3D printing market. The adoption of plastics for automotive applications is not only revolutionizing the way we manufacture cars, but also transforming the way we experience them.

Let’s look at two common 3D-printed plastic materials that are leading the charge for automotive applications:

Nylon (PA): This strong and flexible thermoplastic is ideal for functional, load-bearing applications such as gears, engine components, and jigs and fixtures. Nylon is known for its ability to withstand high temperatures and chemical resistance.

Learn more about Nylon PA

Acrylonitrile butadiene styrene (ABS): ABS offers a good balance of strength, rigidity, and heat resistance. Although not as strong as Nylon, it is suitable for prototypes and interior parts such as dashboards and trim panels.

3. Lightweighting

Automotive engineers are pushing the boundaries of creating intricate, lightweight parts that hold exceptional strength. This isn’t about shedding pounds, it’s about unlocking a future where every gram shaved translates to maximized fuel efficiency, reduced emissions, and improved performance.

Endeavor 3D’s metal and polymer binder jetting technology eliminate the need for hefty molds and wasteful materials by precisely placing material layer upon layer to maximize output and minimize cost. In doing so, automotive engineers don’t have to sacrifice lightweighting when optimizing the topology of automotive parts.

Learn more about Endeavor 3D and Automotive Applications

4. Prototyping

Rapid iteration fueled by 3D printing has propelled prototyping to a commanding 55% of total revenue in the automotive 3D printing market.

What does this mean for automotive engineers?

To answer it simply, shorter production times. The use of rapid prototyping in 3D printed automotive applications enhances the production process, reducing waiting periods from weeks and months to mere hours and days, thereby improving efficiency. Through this, engineers can test-drive designs and explore complex geometries before committing to costly manufacturing.

In addition, the accelerated design and production phase of the product lifecycle enables automotive manufacturers to bypass expensive tooling, part assembly, and cumbersome post-processing steps.

MJF automotive car component

5. A Sustainable Future

In recent years, additive manufacturing’s role in fostering sustainability has shifted from a fanciful story to a practical solution. Consumers are becoming more eco-conscious about the brands they associate with. This juxtaposition has pushed automotive manufacturers to look for ways to overcome challenges in two areas:

Material Waste:

Imagine a manufacturing process where barely any material was wasted but instead reused for subsequent prints. Sounds great, right?  That can become a reality with additive manufacturing. It takes a combination of that process with parts that can be produced with exceptional strength and at a lower cost compared to traditional methods.

Additionally, additive manufacturing steps in by building parts layer-by-layer using reusable powders. Subtractive manufacturing such as CNC machining; a process that removes unneeded material by grinding or milling it away, pales in comparison.

Additionally, the precision of digital manufacturing dramatically reduces the material scrap rate by up to 90%, saving automotive manufacturers both time and money. It ultimately eliminates the need for molds and tooling, thus, the requested order size and build volumes are optimized to minimize waste and overproduction.

Supply Chain Efficiency

Digital manufacturing also promotes a more streamlined and sustainable supply chain. Due to the unpredictable nature of automobiles, end-use parts and prototypes must be able to be printed on-demand.

In the past, energy-intensive manufacturing and transportation methods created a supply chain network that required storage for a large volume of parts. Consequently, this meant automotive manufacturers had to predict demand months in advance, substantially reducing the agility of their supply chain.

Additive manufacturing bridges that gap by enabling manufacturers to upload part designs for quickly made iterations seamlessly. This provides the vehicle makers with a virtual warehouse to source for future use. Through and through, 3D printing eliminates the guesswork for demand and its unpredictable nature, costly inventory, and avoidable emissions and creates a more streamlined supply chain process.

The Road Ahead

Just like the vehicles on our highway, the automotive industry is constantly moving. It’s never been more paramount for automotive manufacturers to keep up with this changing landscape while upholding a high level of quality in their products.

Additive manufacturing is paving the way forward by leveraging technology and supply chain agility to streamline each stage of the automotive manufacturing process.

From design and engineering to post-processing and fulfillment services, Endeavor 3D is in the driver’s seat when it comes to tackling automakers’ toughest challenges.

Are traditional manufacturing methods holding you back? Contact Us to explore how we can give your automotive designs a competitive edge.

Share this post